
“Creating an Interactive Statistical Scouting
Dashboard with R: A Step-by-Step Guide”

Learning new skills through the 2024 League of Ireland Premier Division Season

Lorcán Mason

Table of contents

Introduction 2

Setting Up Your Environment 2

The R Code Explained Step-by-Step 4
1. Loading Libraries . 4
2. Loading and Cleaning the Data . 4
3. Creating UI Elements and Server Logic Functions 6
4. Defining the UI . 9
5. Defining the Server Logic . 12
6. Running the Shiny App . 13

Alternative Use Cases 13
1. Athlete Monitoring . 13
2. GPS Dashboard . 14
3. Player Scouting Reports . 14

Adapting the Code 15

1

Conclusion: Have Fun 15

Introduction

More Resources Available My Website

This tutorial will focus on creating player profiles for the 2024 League of Ireland Premier
Division season. The data used in this tutorial is from the 2024 season and is more information
on the league is available on the League of Ireland website. The data used in this tutorial is
for illustrative purposes only, there are people far smarter than myself who can do this
much better - I just document what I learn!

In this article, we’ll create an interactive sports dashboard using R and Shiny. If you’ve ever
been curious about how to transform raw data into something that’s not only informative but
also genuinely engaging, this is for you. I’ve kept it quite basic as I’m still learning myself,
but I hope it’s helpful to you!

Our aim is to walk through every aspect of the process, from the initial steps of setting up
the environment to crafting dynamic visualizations. The code will be explained in a clear and
detailed manner, discussing the choices made along the way, and exploring various ways to
apply these techniques to a range of different scenarios.

This guide is designed with the absolute beginner (myself!) in mind, so prior coding or data
analysis experience is not required. We will take things slow, providing clear explanations
for each step. By the end of this post, you’ll have a practical understanding of how to build
an interactive dashboard and the skills to adapt it to various use cases.

Our example will focus on visualizing player statistics from the 2024 League of Ireland Sea-
son. However, the methods learned here can be used for any type of data, such as tracking
performance testing data, creating visualizations for GPS outputs, or even compiling detailed
player scouting reports.

Hope, this helps!

Setting Up Your Environment

Before we begin any form of coding, it’s essential to ensure that we have the necessary tools
installed on our machine. This will provide a solid foundation for the work that follows.

1. Install R:

2

https://www.lorcanmason.com/
https://www.sseairtricityleague.ie/

• If you haven’t already, the first step is to download and install R, which is the
programming language at the heart of our dashboard. It’s completely free and can
be downloaded from the official website: https://www.r-project.org/. Please ensure
that you select the correct installer for your operating system (Windows, macOS,
or Linux).

2. Install RStudio (Optional but Recommended):

• While R is essential, we highly recommend using RStudio, which is an Integrated
Development Environment (IDE) that significantly simplifies the R coding process.
It enhances readability, offers helpful tips, and generally makes life easier. You
can download the free RStudio Desktop version from their website: https://www.
rstudio.com/.

3. Install Required Packages:

• Once you’ve successfully installed R and RStudio (if you chose to), please open
RStudio. Locate the console panel (typically in the lower left), which is where we
will type and execute R commands. Please type and execute each command, one
at a time as follows:

install.packages("shiny")
install.packages("tidyverse")
install.packages("plotly")
install.packages("DT")

• shiny: This package provides the core functionality needed to transform your R
code into an interactive web application. For further details, please visit the official
Shiny website.

• tidyverse: This is a suite of R packages designed to facilitate data manipula-
tion and visualization. It provides functions like read.csv, rename, mutate from
the dplyr package, and charting functions from ggplot2 and all under a cohesive
framework. You can further explore the capabilities at the Tidyverse website.

• plotly: This package is used to create interactive graphs with zoom, hover, and
other interactive features. Visit Plotly’s website to see a full set of its capabilities.

• DT: This package creates interactive, sortable data tables within your dashboard.
You can find the full documentation of the package at DT documentation.

4. Create a New R Script:

• Now that all the tools and packages are ready to go, let’s begin by creating a new R
script in RStudio. Navigate to “File,” then “New File,” and then select “R Script.” You
can then save this file with an appropriate name, such as loi_dashboard.R.

3

https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://shiny.rstudio.com/
https://www.tidyverse.org/
https://plotly.com/r/
https://rstudio.github.io/DT/

The R Code Explained Step-by-Step

Now that we have completed the setup phase, we can now examine the R script and its
individual components in more detail.

1. Loading Libraries

Load Libraries
library(shiny)
library(tidyverse)
library(plotly)
library(DT)

• Explanation: This initial section is where we tell R which packages we intend to use
by calling the library() function on the packages we previously installed.

– library(shiny): By using this line, we load the shiny package which allows us
to use all the UI controls and functionality to make our app interactive. You can
explore the full details on the Shiny website.

– library(tidyverse): This command loads the tidyverse package, which is es-
sential for a wide range of tasks such as data cleaning, transformation, and visual-
ization. Further exploration of the tidyverse can be found here.

– library(plotly): The command loads the plotly library, which transforms static
ggplot2 charts into interactive visualizations. You can learn more at the Plotly
website.

– library(DT): Lastly, we load DT which provides the tools to create interactive
HTML data tables within our Shiny app. More info on the DT documentation.

2. Loading and Cleaning the Data

Load the Data
player_data <- read.csv("all_player_loi.csv")

Data Cleaning
player_data <- player_data %>%

rename(
"Player Name" = "Player",
"Minutes Played" = "Minutes.Played",
"Accurate Long Balls per 90" = "Accurate.Long.Balls.per.90",

4

https://shiny.rstudio.com/
https://www.tidyverse.org/
https://plotly.com/r/
https://plotly.com/r/
https://rstudio.github.io/DT/

"Accurate Pass per 90" = "Accurate.Pass.per.90",
"Big Chances Missed" = "Big.Chances.Missed",
"Big Chances Created" = "Big.Chances.Created",
"Blocks per 90" = "Blocks.per.90",
"Chances Created" = "Chances.Created",
"Clean Sheets" = "Clean.Sheets",
"Clearances per 90" = "Clearances.per.90",
"Player Rating" = "Player.Rating",
"Fouls per 90" = "Fouls.per.90",
"Goals and Assists" = "Goals.and.Assists",
"Goals Conceded per 90" = "Goals.Conceded.per.90",
"Goals per 90" = "Goals.per.90",
"Interceptions per 90" = "Interceptions.per.90",
"Penalties Conceded" = "Penalties.Conceded",
"Penalties Won" = "Penalties.Won",
"Possession Won Att 3rd per 90" = "Possession.Won.Att.3rd.per.90",
"Red Cards" = "Red.Cards",
"Save Percentage" = "Save.Percentage",
"Saves per 90" = "Saves.per.90",
"Shots on Target per 90" = "Shots.on.Target.per.90",
"Shots per 90" = "Shots.per.90",
"Successful Dribbles per 90" = "Successful.Dribbles.per.90",
"Successful Tackles per 90" = "Successful.Tackles.per.90",
"Yellow Cards" = "Yellow.Cards",
"Fouls Committed per 90" = "Fouls.per.90",
"Possession Won Attacking 3rd per 90" = "Possession.Won.Att.3rd.per.90"

)

Calculate Goal Contributions
player_data <- player_data %>%

mutate(goal_contributions = `Goals` + `Assists`)

teams <- sort(unique(player_data$Team))

• Explanation:

– player_data <- read.csv("all_player_loi.csv"): This line is where the data
is brought into R. The read.csv() function is called from the utils package. It
imports our data from a CSV file named all_player_loi.csv, which needs to be
in the same directory as your R script. You can read the full documentation on the
read.csv function in R here.

5

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html

– player_data <- player_data %>% rename(...): This is the first of a few lines
where we clean up and organise the loaded data. The rename() function, which
comes with the dplyr package, is used here to make column names more readable.
For example, the original column name “Player” is renamed to “Player Name”.
More information on the rename function can be found here.

– player_data <- player_data %>% mutate(goal_contributions = Goals +
Assists): Here, we generate a new column that combines data from two others,
using the mutate function from dplyr. We create the goal_contributions
column by adding the numerical values from both the Goals and Assists columns.
You can learn more about the mutate function here.

– teams <- sort(unique(player_data$Team)): This line creates a sorted list of all
unique teams within the data. The unique function extracts all the unique values
from the Team column, which are then sorted by sort.

3. Creating UI Elements and Server Logic Functions

Function to create a filtered bar chart and table UI
create_stats_ui <- function(id, variable_name, label) {

ns <- NS(id)
tagList(

fluidRow(
column(12,

h4(label),
selectInput(ns("team_select"), "Select Team", choices = c("All

Teams", teams), selected = "All Teams"),↪

plotlyOutput(ns("bar_chart")),
dataTableOutput(ns("player_table"))

)
)

)
}

Function to create the server logic
create_stats_server <- function(id, variable_name, is_goalkeeping = FALSE) {

moduleServer(
id,
function(input, output, session) {

filtered_data <- reactive({
if(input$team_select == "All Teams"){

6

https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/mutate.html

player_data
} else {

player_data %>%
filter(Team == input$team_select)

}
})

output$bar_chart <- renderPlotly({

if (is_goalkeeping) {
top_players <- filtered_data() %>%
filter(`Clean Sheets` > 0 | `Goals Conceded per 90` > 0 |

`Save Percentage` > 0 | `Saves per 90` >0) %>%↪

arrange(desc(!!sym(variable_name))) %>%
head(10)

} else {
top_players <- filtered_data() %>%

arrange(desc(!!sym(variable_name))) %>%
head(20)

}

avg_value <- filtered_data() %>%
summarize(avg = mean(!!sym(variable_name), na.rm = TRUE)) %>%
pull(avg)

plot <- ggplot(top_players, aes(x = reorder(`Player Name`,
!!sym(variable_name)), y = !!sym(variable_name), fill = Team,text=`Player
Name`)) +

↪

↪

geom_bar(stat = "identity") +
geom_hline(aes(yintercept = avg_value, text = paste("Average:",

round(avg_value, 2))), color = "red", linetype="dashed") +↪

coord_flip() +
geom_label(aes(y = avg_value, label = paste("Average:",

round(avg_value,2))),↪

hjust = 0, vjust = -0.5, fill = "white", color =
"black") +↪

labs(y = NULL) +
theme_minimal()

ggplotly(plot, tooltip = c("y", "text"))

7

})

output$player_table <- renderDataTable({
if(is_goalkeeping){

top_players <- filtered_data() %>%
filter(`Clean Sheets` > 0 | `Goals Conceded per 90` > 0 |

`Save Percentage` > 0 | `Saves per 90` >0) %>%↪

arrange(desc(!!sym(variable_name))) %>%
select(`Player Name`, Team, !!sym(variable_name))

} else {
top_players <- filtered_data() %>%

arrange(desc(!!sym(variable_name))) %>%
select(`Player Name`, Team, !!sym(variable_name))

}

datatable(top_players, options = list(order = list(3, 'desc'),
pageLength = 5,
lengthMenu = c(5,10, 15)

))
})

}
)

}

• Explanation:

– create_stats_ui: This function encapsulates a UI block which contains a header,
team selection dropdown, an area to display the bar chart and a data table.

∗ ns <- NS(id): This line creates a namespace, and this is used to ensure unique
IDs for each element created inside a module to avoid namespace clashes by
using the NS function. You can learn more about the NS function and modularity
here.

∗ selectInput(ns("team_select"), "Select Team", choices = c("All
Teams", teams), selected = "All Teams"): This generates a dropdown
menu for selecting a team. The selectInput function can be explored further
in the Shiny UI documentation here.

∗ plotlyOutput(ns("bar_chart")): This line creates a placeholder where the
bar chart, made with plotly, will be displayed. The function can be seen in
the documentation here.

∗ dataTableOutput(ns("player_table")): This is a placeholder for the
interactive table made using the DT package. You can see further info on

8

https://shiny.rstudio.com/articles/modules.html
https://shiny.rstudio.com/reference/shiny/latest/selectInput.html
https://shiny.rstudio.com/reference/shiny/latest/plotlyOutput.html

dataTableOutput here.
– create_stats_server: This function contains all the server side logic for each UI

block. This function also contains:
∗ moduleServer(id, function(input, output, session) { ... }): Using

the moduleServer function makes the logic defined here reusable in other
parts of the application. Details on this function can be found here.

∗ filtered_data <- reactive({...}): This creates a reactive expression
which means it automatically updates when the input changes. It uses the
reactive function which takes the current selected team in the selectInput
and filters the dataset to only include the selected team, or all teams if the
“All Teams” option is selected.

∗ output$bar_chart <- renderPlotly({...}): Inside this, we are defining
how to create and render an interactive bar chart using the renderPlotly func-
tion which uses ggplot2 and plotly. Firstly the top 20 players are selected for
the given variable, and if on the goalkeeping tab, the top 10 goalkeepers with
data are selected. An average is calculated for all values in the given column
and displayed as a horizontal line with the text of the average. The full set of
ggplot2 components are described here. And, the documentation for plotly
is here.

∗ output$player_table <- renderDataTable({...}): Here we are construct-
ing an interactive table, rendered using the datatable function from the DT
package. Players are sorted by a given metric and the users can set the number
of rows to display on each page, as specified in the options parameter. Details
of datatable can be found here.

4. Defining the UI

Define UI
ui <- fluidPage(

titlePanel(
HTML(

'<div style="display: flex; align-items: center;">
<img

src="https://www.sligorovers.com/wp-content/uploads/2018/03/221009_SSE-LOI-MENS-PREM_LOGO-1_HoldShape_RGB-1024x249.png"
style="height: 80px; margin-right: 10px;">

↪

↪

League of Ireland
Player Statistics↪

</div>'
)

),

9

https://shiny.rstudio.com/reference/shiny/latest/dataTableOutput.html
https://shiny.rstudio.com/articles/modules.html
https://ggplot2.tidyverse.org/
https://plotly.com/r/
https://rstudio.github.io/DT/functions/datatable.html

tabsetPanel(
tabPanel("Attacking",

create_stats_ui("attacking_goals", "Goals", "Goals"),
create_stats_ui("attacking_goals_per_90", "Goals per 90", "Goals

per 90"),↪

create_stats_ui("attacking_goals_and_assists", "Goals and
Assists", "Goals and Assists"),↪

create_stats_ui("attacking_big_chances_missed", "Big Chances
Missed", "Big Chances Missed"),↪

create_stats_ui("attacking_shots_on_target_per_90", "Shots on
Target per 90", "Shots on Target per 90"),↪

create_stats_ui("attacking_shots_per_90", "Shots per 90", "Shots
per 90")↪

),
tabPanel("Creativity",

create_stats_ui("creativity_assists", "Assists", "Assists"),
create_stats_ui("creativity_accurate_long_balls_per_90",

"Accurate Long Balls per 90", "Accurate Long Balls per 90"),↪

create_stats_ui("creativity_accurate_passes_per_90", "Accurate
Pass per 90", "Accurate Pass per 90"),↪

create_stats_ui("creativity_big_chances_created", "Big Chances
Created", "Big Chances Created"),↪

create_stats_ui("creativity_chances_created", "Chances Created",
"Chances Created"),↪

create_stats_ui("creativity_successful_dribbles_per_90",
"Successful Dribbles per 90", "Successful Dribbles per 90"),↪

create_stats_ui("creativity_penalties_won", "Penalties Won",
"Penalties Won")↪

),
tabPanel("Defending",

create_stats_ui("defending_interceptions_per_90", "Interceptions
per 90", "Interceptions per 90"),↪

create_stats_ui("defending_successful_tackles_per_90",
"Successful Tackles per 90", "Successful Tackles per 90"),↪

create_stats_ui("defending_blocks_per_90", "Blocks per 90",
"Blocks per 90"),↪

create_stats_ui("defending_clearances_per_90", "Clearances per
90", "Clearances per 90"),↪

create_stats_ui("defending_possession_won_attacking_3rd_per_90",
"Possession Won Attacking 3rd per 90", "Possession Won
Attacking 3rd per 90")

↪

↪

),

10

tabPanel("Discipline",
create_stats_ui("discipline_yellow_cards", "Yellow Cards",

"Yellow Cards"),↪

create_stats_ui("discipline_red_cards", "Red Cards", "Red
Cards"),↪

create_stats_ui("discipline_penalties_conceded", "Penalties
Conceded", "Penalties Conceded"),↪

create_stats_ui("discipline_fouls_committed_per_90", "Fouls
Committed per 90", "Fouls Committed per 90")↪

),
tabPanel("Goalkeeping",

create_stats_ui("goalkeeping_clean_sheets", "Clean Sheets",
"Clean Sheets"),↪

create_stats_ui("goalkeeping_goals_conceded_per_90", "Goals
Conceded per 90", "Goals Conceded per 90"),↪

create_stats_ui("goalkeeping_save_percentage", "Save
Percentage", "Save Percentage"),↪

create_stats_ui("goalkeeping_saves_per_90", "Saves per 90",
"Saves per 90")↪

)
)

)

• Explanation:

– ui <- fluidPage(...): This sets up the main user interface using the fluidPage
function from shiny, which is designed to be responsive and work well on different
screen sizes. You can see more info on the fluidPage function here.

– titlePanel(...): This adds a title at the top of the page, using the titlePanel
function. We have used HTML() within this function to embed a logo along with a
text title for the dashboard. More information on how to use this to create more
customized titles can be found here.

• tabsetPanel(...): This sets up the tab based navigation, enabling users to interact
with the data across different categories using the tabsetPanel function. Details on this
function can be found here.

– Inside the tabsetPanel we can define multiple tabPanel elements, and the
create_stats_ui is called multiple times to build the required elements for each
tab. The tabPanel function is described in the documentation here.

11

https://shiny.rstudio.com/reference/shiny/latest/fluidPage.html
https://shiny.rstudio.com/reference/shiny/latest/titlePanel.html
https://shiny.rstudio.com/reference/shiny/latest/tabsetPanel.html
https://shiny.rstudio.com/reference/shiny/latest/tabPanel.html

5. Defining the Server Logic

Define server
server <- function(input, output, session) {

Server logic for each tab
create_stats_server("attacking_goals", "Goals")
create_stats_server("attacking_goals_per_90", "Goals per 90")
create_stats_server("attacking_goals_and_assists", "Goals and Assists")
create_stats_server("attacking_big_chances_missed", "Big Chances Missed")
create_stats_server("attacking_shots_on_target_per_90", "Shots on Target

per 90")↪

create_stats_server("attacking_shots_per_90", "Shots per 90")

create_stats_server("creativity_assists", "Assists")
create_stats_server("creativity_accurate_long_balls_per_90", "Accurate Long

Balls per 90")↪

create_stats_server("creativity_accurate_passes_per_90", "Accurate Pass per
90")↪

create_stats_server("creativity_big_chances_created", "Big Chances
Created")↪

create_stats_server("creativity_chances_created", "Chances Created")
create_stats_server("creativity_successful_dribbles_per_90", "Successful

Dribbles per 90")↪

create_stats_server("creativity_penalties_won", "Penalties Won")

create_stats_server("defending_interceptions_per_90", "Interceptions per
90")↪

create_stats_server("defending_successful_tackles_per_90", "Successful
Tackles per 90")↪

create_stats_server("defending_blocks_per_90", "Blocks per 90")
create_stats_server("defending_clearances_per_90", "Clearances per 90")
create_stats_server("defending_possession_won_attacking_3rd_per_90",

"Possession Won Attacking 3rd per 90")↪

create_stats_server("discipline_yellow_cards", "Yellow Cards")
create_stats_server("discipline_red_cards", "Red Cards")
create_stats_server("discipline_penalties_conceded", "Penalties Conceded")
create_stats_server("discipline_fouls_committed_per_90", "Fouls Committed

per 90")↪

12

create_stats_server("goalkeeping_clean_sheets", "Clean Sheets",
is_goalkeeping = TRUE)↪

create_stats_server("goalkeeping_goals_conceded_per_90", "Goals Conceded
per 90", is_goalkeeping = TRUE)↪

create_stats_server("goalkeeping_save_percentage", "Save Percentage",
is_goalkeeping = TRUE)↪

create_stats_server("goalkeeping_saves_per_90", "Saves per 90",
is_goalkeeping = TRUE)↪

}

• Explanation:

– server <- function(input, output, session) { ... }: This defines the
server-side logic of the application. We are now linking up the UI elements with
their corresponding functionality, by calling the create_stats_server for each
metric to make each graph and table in the UI dynamic.

– The create_stats_server calls are made in this section, with the goalkeeping tab
getting the parameter is_goalkeeping = TRUE passed to ensure only goalkeepers
are shown on the visualizations.

6. Running the Shiny App

Run the app
shinyApp(ui, server)

• Explanation: This line is like the final step - when everything comes together and the
application is launched. It calls the shinyApp(ui, server) function, which takes the UI
and server definitions and launches the Shiny application in your browser. More details
on how to use the shinyApp function is available here.

Alternative Use Cases

Now, let’s explore how you can adapt this dashboard to different contexts:

1. Athlete Monitoring

• Data: Instead of soccer stats, you might have data from wearable sensors like heart rate
monitors, GPS trackers, and accelerometers.

13

https://shiny.rstudio.com/reference/shiny/latest/shinyApp.html

• Metrics: Track metrics such as:

– Distance covered
– Top speed
– Heart rate variability
– Acceleration and deceleration
– Player load

• Visualization:

– Time-series plots showing trends over time.
∗ Time Series Data with ggplot2: Using the geom_line is a great way to plot

time series data in ggplot2, and it helps us visualize how data changes over
time.

– Heatmaps showing the intensity of activity on a field.
∗ Heatmaps with ggplot2: Heatmaps are great at visualising the intensity of

activity over a given area.
– Individual player profiles with personalized metrics.

2. GPS Dashboard

• Data: GPS data providing location, speed, and distance.
• Metrics:

– Distance covered in various zones of a field.
– Speed in different directions.
– Heatmaps showing coverage and density of player movement.

• Visualization:

– Geographical maps to visualize player movement during a match.
∗ Mapping with R: In this guide, learn how to use R for plotting mapping data.

– Animation of player positions over time.
∗ Animation with gganimate: The gganimate package allows you to animate

your ggplot2 charts.
– Individual speed profiles.

3. Player Scouting Reports

• Data: Data for a large database of players with multiple attributes.
• Metrics: Combine performance and physical metrics to understand the potential of a

player

14

https://ggplot2.tidyverse.org/reference/geom_line.html
https://ggplot2.tidyverse.org/reference/geom_tile.html
https://r-spatial.org/r/2018/10/25/ggplot2-sf.html
https://gganimate.com/

• Visualization:

– Radar charts to visualize the attributes of a player compared to other players in a
particular league.

∗ Radar Charts in R: If you want to learn more about radar charts, this R graph
gallery page details how to create this using R.

– Box plots to visualize the distribution of different stats for a group of players
∗ Box Plots in R: Box plots are a great way to show the distribution of data.

– Player comparison charts where the attributes of 2 different players can be compared
side by side.

– Include video clips or game footage, if accessible.

Adapting the Code

To adapt the current code, you can make the following changes:

1. Data Loading: The read.csv() call is specifically used to load CSV data. Depending
on the format of your data, this line may need modification. There are many different
methods available for importing different file types in R.

2. Data Cleaning: You’ll likely need to adjust the rename() and mutate() functions to
match the column names and transformations required by your data.

3. Visualization: The use of ggplot2 means that we can create a range of different charts
based on our needs. You might want to research the correct geom_ layer to be used to
visualize your data depending on what you want to show in the chart.

4. UI elements: The Shiny package contains a range of different UI elements that can be
used to create interactive controls for your app. Please explore the documentation here.

5. Server logic: Reactive expressions are at the core of dynamic content within Shiny
apps, and they make it easier to create interactive apps. Further information on reactive
expressions can be found here.

Conclusion: Have Fun

That’s that! You’ve successfully taken your first steps into building interactive data visualiza-
tions with R and Shiny. Now you should have a good grasp of the main R code blocks, the
Shiny package and its functionality, how to visualise your data using the ggplot2 package and
how to make it all interactive using plotly and DT. I hope you’ve enjoyed this tutorial and
that it has provided some value to you. Remember, the best way to get better is by building
more dashboards, and you can use the code that we have created as a starting point.

I’ve no doubt that this can be done more efficiently than I have done it but this is what I have
learned so far. I hope this helps in some way and if you are a more experienced R user, I would

15

https://www.r-graph-gallery.com/radar-chart.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://shiny.rstudio.com/reference/shiny/latest/index.html
https://shiny.rstudio.com/articles/reactivity.html

love to hear your feedback on how I can improve this process - feel free to reach out to me
on Twitter or LinkedIn. To learn from the experts, please check out TidyX by Patrick Ward
and Ellis Hughes on Youtube. Mladen Jovanović also has fantastic courses on his website
Complementary Training.

Stay Curious!

16

https://twitter.com/lorcanmason
https://www.linkedin.com/in/lorc%C3%A1n-mason/
https://x.com/tidy_explained
https://x.com/OSPpatrick
https://x.com/ellis_hughes
https://youtube.com/@tidyx_screencast?si=JkGaI98f-W9fyrfW
https://x.com/Physical_Prep
https://complementarytraining.com/

	Introduction
	Setting Up Your Environment
	The R Code Explained Step-by-Step
	1. Loading Libraries
	2. Loading and Cleaning the Data
	3. Creating UI Elements and Server Logic Functions
	4. Defining the UI
	5. Defining the Server Logic
	6. Running the Shiny App

	Alternative Use Cases
	1. Athlete Monitoring
	2. GPS Dashboard
	3. Player Scouting Reports

	Adapting the Code
	Conclusion: Have Fun

