
“EURO 24 Web Scraping”
A tutorial of scraping EURO 24 Stats from FBRef by a complete beginner

Lorcán Mason

Table of contents

1 Introduction to Web Scraping and Writing Data to CSV and Excel Files 5
1.1 Load libraries for Web Scraping . 5
1.2 Define the Live HTML URLs for each Stats Web Page from FBRef 6

2 Scrape General Stats Page 6
2.1 Read the live html tables from FBRef . 6
2.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 7
2.3 Convert the 1st row to column names and remove it from the data 7
2.4 Clean the column names and remove the rows with recurring column names 7
2.5 Remove the “matches” column as it is not needed . 7
2.6 Convert the numeric columns to numeric . 7

2.6.1 Scrape the player ids from the player links in the live html table 7
2.7 Join the datasets together . 8
2.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 8
2.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 8
2.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 9
2.11 Rename every column to make them more descriptive . 9
2.12 View the final data . 10
2.13 Write the data to a csv file . 12
2.14 Write the data to an Excel file . 12

3 Scrape General GK Stats Page 12
3.1 Read the live html tables from FBRef . 12
3.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 12

1

3.3 Convert the 1st row to column names and remove it from the data 12
3.4 Clean the column names and remove the rows with recurring column names 13
3.5 Remove the “matches” column as it is not needed . 13
3.6 Convert the numeric columns to numeric . 13

3.6.1 Scrape the player ids from the player links in the live html table 13
3.7 Join the datasets together . 14
3.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 14
3.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 14
3.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 14
3.11 Rename every column to make them more descriptive . 14
3.12 View the data . 15
3.13 Write the data to a csv file . 16
3.14 Write the data to an Excel file . 16

4 Scrape Advanced GK Stats Page 16
4.1 Read the live html tables from FBRef . 16
4.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 16
4.3 Convert the 1st row to column names and remove it from the data 16
4.4 Clean the column names and remove the rows with recurring column names 17
4.5 Remove the “matches” column as it is not needed . 17
4.6 Convert the numeric columns to numeric . 17

4.6.1 Scrape the player ids from the player links in the live html table 17
4.7 Join the datasets together . 17
4.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 18
4.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 18
4.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 18
4.11 Rename every column to make them more descriptive . 18
4.12 View the data . 19
4.13 Write the data to a csv file . 21
4.14 Write the data to an Excel file . 22

5 Scrape Shooting Stats Page 22
5.1 Read the live html tables from FBRef . 22
5.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 22
5.3 Convert the 1st row to column names and remove it from the data 22
5.4 Clean the column names and remove the rows with recurring column names 22
5.5 Remove the “matches” column as it is not needed . 22
5.6 Convert the numeric columns to numeric . 23

5.6.1 Scrape the player ids from the player links in the live html table 23
5.7 Join the datasets together . 23
5.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 23
5.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 24
5.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 24
5.11 Rename every column to make them more descriptive . 24
5.12 Write the data to a csv file . 25
5.13 Write the data to an Excel file . 25

2

6 Scrape Passing Stats Page 25
6.1 Read the live html tables from FBRef . 25
6.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 25
6.3 Convert the 1st row to column names and remove it from the data 25
6.4 Clean the column names and remove the rows with recurring column names 25
6.5 Remove the “matches” column as it is not needed . 26
6.6 Convert the numeric columns to numeric . 26

6.6.1 Scrape the player ids from the player links in the live html table 26
6.7 Join the datasets together . 26
6.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 27
6.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 27
6.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 27
6.11 Rename every column to make them more descriptive . 27
6.12 Write the data to a csv file . 28
6.13 Write the data to an Excel file . 28

7 Scrape Passing Types Stats Page 28
7.1 Read the live html tables from FBRef . 28
7.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 28
7.3 Convert the 1st row to column names and remove it from the data 29
7.4 Clean the column names and remove the rows with recurring column names 29
7.5 Remove the “matches” column as it is not needed . 29
7.6 Convert the numeric columns to numeric . 29

7.6.1 Scrape the player ids from the player links in the live html table 29
7.7 Join the datasets together . 30
7.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 30
7.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 30
7.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 30
7.11 As column 15 contains the inswinging corner kicks, we can rename it to make it more descriptive . 30
7.12 Rename every other column to make them more descriptive 31
7.13 Write the data to a csv file . 31
7.14 Write the data to an Excel file . 31

8 Scrape Creation Stats Page 32
8.1 Read the live html tables from FBRef . 32
8.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 32
8.3 Convert the 1st row to column names and remove it from the data 32
8.4 Clean the column names and remove the rows with recurring column names 32
8.5 Remove the “matches” column as it is not needed . 32
8.6 Convert the numeric columns to numeric . 32

8.6.1 Scrape the player ids from the player links in the live html table 33
8.7 Join the datasets together . 33
8.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 33
8.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 33
8.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 34
8.11 Rename every column to make them more descriptive . 34
8.12 Write the data to a csv file . 34

3

8.13 Write the data to an Excel file . 35

9 Scrape Defensive Stats Page 35
9.1 Read the live html tables from FBRef . 35
9.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 35
9.3 Convert the 1st row to column names and remove it from the data 35
9.4 Clean the column names and remove the rows with recurring column names 35
9.5 Remove the “matches” column as it is not needed . 35
9.6 Convert the numeric columns to numeric . 36

9.6.1 Scrape the player ids from the player links in the live html table 36
9.7 Join the datasets together . 36
9.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 36
9.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 37
9.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 37
9.11 Rename every column to make them more descriptive . 37
9.12 Write the data to a csv file . 38
9.13 Write the data to an Excel file . 38

10 Scrape Possession Stats Page 38
10.1 Read the live html tables from FBRef . 38
10.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 38
10.3 Convert the 1st row to column names and remove it from the data 38
10.4 Clean the column names and remove the rows with recurring column names 38
10.5 Remove the “matches” column as it is not needed . 39
10.6 Convert the numeric columns to numeric . 39

10.6.1 Scrape the player ids from the player links in the live html table 39
10.7 Join the datasets together . 39
10.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 40
10.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 40
10.10Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 40
10.11Rename every column to make them more descriptive . 40
10.12Write the data to a csv file . 41
10.13Write the data to an Excel file . 41

11 Scrape Playing Time Stats Page 41
11.1 Read the live html tables from FBRef . 41
11.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 41
11.3 Convert the 1st row to column names and remove it from the data 42
11.4 Clean the column names and remove the rows with recurring column names 42
11.5 Remove the “matches” column as it is not needed . 42
11.6 Convert the numeric columns to numeric . 42

11.6.1 Scrape the player ids from the player links in the live html table 42
11.7 Join the datasets together . 43
11.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 43
11.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 43
11.10Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 43
11.11Rename every column to make them more descriptive . 43

4

11.12Write the data to a csv file . 44
11.13Write the data to an Excel file . 44

12 Scrape Misc Stats Page 45
12.1 Read the live html tables from FBRef . 45
12.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual

player data . 45
12.3 Convert the 1st row to column names and remove it from the data 45
12.4 Clean the column names and remove the rows with recurring column names 45
12.5 Remove the “matches” column as it is not needed . 45
12.6 Convert the numeric columns to numeric . 45

12.6.1 Scrape the player ids from the player links in the live html table 46
12.7 Join the datasets together . 46
12.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its final format 46
12.9 Calculate an new ‘age’ column from the ‘born’ column to 2024 46
12.10Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to the ‘player’

column . 47
12.11Rename every column to make them more descriptive . 47
12.12Write the data to a csv file . 47
12.13Write the data to an Excel file . 48

13 Combine all csv files into one 48
13.1 Move ‘player_link’ column to after ‘player’ column and Move ‘age’ column to after ‘country’ column 50
13.2 Replace all numeric NA values with 0 . 50
13.3 Remove all rows with dublicated player_link . 50
13.4 Write the combined data to a csv file . 51
13.5 Write the combined data to an Excel file . 51

1 Introduction to Web Scraping and Writing Data to CSV and Excel Files

Web scraping is a powerful technique used to extract data from websites, allowing you to gather information that
might not be readily available in structured formats like databases or APIs. This data can then be cleaned and
processed for analysis or storage in various formats, such as CSV (Comma-Separated Values) or Excel files.
Using R and its powerful packages such as rvest, tidyverse, stringr, readr, and openxlsx, you can efficiently
scrape, clean, and store data in formats suitable for analysis.

I’ve no doubt that this can be done more efficiently than I have done it but this is what I have learned so far. I hope
this helps in some way and if you are a more experienced R user, I would love to hear your feedback on how I
can improve this process - feel free to reach out to me on Twitter or LinkedIn. Below is a step-by-step guide on
how to scrape all stats pages from EURO 24 via the FBRef website and write it to an Excel file and a CSV file. To
learn from the experts, please check out TidyX by Patrick Ward and Ellis Hughes on Youtube. Mladen Jovanović
also has fantastic courses on his website Complementary Training.

1.1 Load libraries for Web Scraping

5

https://twitter.com/lorcanmason
https://www.linkedin.com/in/lorc%C3%A1n-mason/
https://fbref.com/en/
https://x.com/tidy_explained
https://x.com/OSPpatrick
https://x.com/ellis_hughes
https://youtube.com/@tidyx_screencast?si=JkGaI98f-W9fyrfW
https://x.com/Physical_Prep
https://complementarytraining.com/

library(rvest)
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x readr::guess_encoding() masks rvest::guess_encoding()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(stringr)
library(readr)
library(openxlsx)

1.2 Define the Live HTML URLs for each Stats Web Page from FBRef

general_stats_url <- "https://fbref.com/en/comps/676/stats/UEFA-Euro-Stats"
gk_url <- "https://fbref.com/en/comps/676/keepers/UEFA-Euro-Stats"
adv_gk_url <- "https://fbref.com/en/comps/676/keepersadv/UEFA-Euro-Stats"
shooting_url <- "https://fbref.com/en/comps/676/shooting/UEFA-Euro-Stats"
passing_stats <- "https://fbref.com/en/comps/676/passing/UEFA-Euro-Stats"
passing_types_stats <- "https://fbref.com/en/comps/676/passing_types/UEFA-Euro-Stats"
creation_stats <- "https://fbref.com/en/comps/676/gca/UEFA-Euro-Stats"
defensive_stats <- "https://fbref.com/en/comps/676/defense/UEFA-Euro-Stats"
possession_stats <- "https://fbref.com/en/comps/676/possession/UEFA-Euro-Stats"
playing_time_stats <- "https://fbref.com/en/comps/676/playingtime/UEFA-Euro-Stats"
misc_stats <- "https://fbref.com/en/comps/676/misc/UEFA-Euro-Stats"

2 Scrape General Stats Page

2.1 Read the live html tables from FBRef

6

standard_euro_tables <- read_html_live(general_stats_url) %>%
html_table(fill = T)

2.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

standard_players <- standard_euro_tables %>%
.[[3]] %>%
as.data.frame()

2.3 Convert the 1st row to column names and remove it from the data

colnames(standard_players) <- standard_players[1,]
standard_players <- standard_players[-1,]

2.4 Clean the column names and remove the rows with recurring column names

standard_players <- standard_players %>%
janitor::clean_names() %>%
filter(player != "Player")

2.5 Remove the “matches” column as it is not needed

standard_players <- standard_players %>%
select(-matches)

2.6 Convert the numeric columns to numeric

standard_players <- standard_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

2.6.1 Scrape the player ids from the player links in the live html table

7

player_id <- read_html_live(general_stats_url) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

2.7 Join the datasets together

standard_players <- standard_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

2.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

standard_players <- standard_players %>%
select(-rk, -age)

2.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

standard_players <- standard_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

8

2.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

standard_players <- standard_players %>%
select(-born) %>%
select(player, age, everything())

2.11 Rename every column to make them more descriptive

standard_players <- standard_players %>%
rename(
position = pos,
country = squad,
matches_played = mp,
minutes_played = min,
played_90 = x90s,
goals = gls,
assists = ast,
combined_goals_and_assists = g_a,
non_penalty_goals = g_pk,
penalties_scored = pk,
penalties_taken = p_katt,
yellow_cards = crd_y,
red_cards = crd_r,
expected_goals = x_g,
non_penalty_expected_goals = npx_g,
expected_assisted_goals = x_ag,
non_penalty_expected_goals_and_assisted_goals = npx_g_x_ag,
progressive_carries = prg_c,
progressive_passes = prg_p,
progressive_passes_received = prg_r,
per90_goals = gls_2,
per90_assists = ast_2,
per90_goals_and_assists = g_a_2,
per90_non_penalty_goals = g_pk_2,
per90_non_penalty_goals_and_assists = g_a_pk,
per90_expected_goals = x_g_2,
per90_expected_assisted_goals = x_ag_2,
per90_expected_goals_and_assisted_goals = x_g_x_ag,
per90_non_penalty_expected_goals = npx_g_2,

9

per90_non_penalty_expected_goals_and_assisted_goals = npx_g_x_ag_2,
player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed

select(-player_id)

2.12 View the final data

head(standard_players)

player age position country matches_played starts
1 Che Adams 28 FW sct Scotland 3 3
2 Michel Aebischer 27 DF ch Switzerland 5 5
3 Arlind Ajeti 31 DF al Albania 3 3
4 Manuel Akanji 29 DF ch Switzerland 5 5
5 Samet Akaydın 30 DF tr Türkiye 4 4
6 Nathan Aké 29 DF nl Netherlands 6 6
minutes_played played_90 goals assists combined_goals_and_assists

1 209 2.3 0 0 0
2 476 5.3 1 2 3
3 270 3.0 0 0 0
4 480 5.3 0 0 0
5 335 3.7 1 0 1
6 470 5.2 0 1 1
non_penalty_goals penalties_scored penalties_taken yellow_cards red_cards

1 0 0 0 0 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 1 0 0 2 0
6 0 0 0 1 0

expected_goals non_penalty_expected_goals expected_assisted_goals
1 0.1 0.1 0.1
2 0.1 0.1 1.2
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.4 0.4 0.0
6 0.1 0.1 0.4

non_penalty_expected_goals_and_assisted_goals progressive_carries
1 0.2 3
2 1.3 4
3 0.0 1

10

4 0.0 2
5 0.4 1
6 0.6 7
progressive_passes progressive_passes_received per90_goals per90_assists

1 2 10 0.00 0.00
2 28 18 0.19 0.38
3 5 0 0.00 0.00
4 25 1 0.00 0.00
5 15 0 0.27 0.00
6 21 11 0.00 0.19

per90_goals_and_assists per90_non_penalty_goals
1 0.00 0.00
2 0.57 0.19
3 0.00 0.00
4 0.00 0.00
5 0.27 0.27
6 0.19 0.00
per90_non_penalty_goals_and_assists per90_expected_goals

1 0.00 0.05
2 0.57 0.02
3 0.00 0.00
4 0.00 0.00
5 0.27 0.09
6 0.19 0.02
per90_expected_assisted_goals per90_expected_goals_and_assisted_goals

1 0.03 0.09
2 0.22 0.24
3 0.00 0.00
4 0.00 0.00
5 0.00 0.09
6 0.08 0.11
per90_non_penalty_expected_goals

1 0.05
2 0.02
3 0.00
4 0.00
5 0.09
6 0.02
per90_non_penalty_expected_goals_and_assisted_goals

1 0.09
2 0.24
3 0.00

11

4 0.00
5 0.09
6 0.11

player_link
1 https://fbref.com//en/players/f2bf1b0f/Che-Adams
2 https://fbref.com//en/players/f9c927de/Michel-Aebischer
3 https://fbref.com//en/players/f9714604/Arlind-Ajeti
4 https://fbref.com//en/players/89ac64a6/Manuel-Akanji
5 https://fbref.com//en/players/7328bee5/Samet-Akaydin
6 https://fbref.com//en/players/eaeca114/Nathan-Ake

2.13 Write the data to a csv file

write_csv(standard_players, "standard_players.csv")

2.14 Write the data to an Excel file

write.xlsx(standard_players, "standard_players.xlsx")

3 Scrape General GK Stats Page

3.1 Read the live html tables from FBRef

gk_euro_tables <- read_html_live(gk_url) %>%
html_table(fill = T)

3.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

gk_players <- gk_euro_tables %>%
.[[3]] %>%
as.data.frame()

3.3 Convert the 1st row to column names and remove it from the data

12

colnames(gk_players) <- gk_players[1,]
gk_players <- gk_players[-1,]

3.4 Clean the column names and remove the rows with recurring column names

gk_players <- gk_players %>%
janitor::clean_names() %>%
filter(player != "Player")

3.5 Remove the “matches” column as it is not needed

gk_players <- gk_players %>%
select(-matches)

3.6 Convert the numeric columns to numeric

gk_players <- gk_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

3.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(gk_url) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

13

3.7 Join the datasets together

gk_players <- gk_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

3.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

gk_players <- gk_players %>%
select(-rk, -age)

3.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

gk_players <- gk_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

3.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

gk_players <- gk_players %>%
select(-born) %>%
select(player, age, everything())

3.11 Rename every column to make them more descriptive

gk_players <- gk_players %>%
rename(
position = pos,
country = squad,
matches_played = mp,
minutes_played = min,
played_90 = x90s,
goals_against = ga,

14

goals_against_per_90 = ga90,
shots_on_target_against = so_ta,
wins = w,
draw = d,
losses = l,
clean_sheets = cs,
clean_sheets_percentage = cs_percent,
penalty_kicks_attempted = p_katt,
penalty_kicks_allowed = pka,
penalty_kicks_saved = p_ksv,
penalty_kicks_missed = p_km,
penalty_kicks_saved_percentage = save_percent_2,
player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed

select(-player_id)

3.12 View the data

glimpse(gk_players)

Rows: 29
Columns: 24
$ player <chr> "Altay Bayındır", "Koen Casteels", "Dio~
$ age <dbl> 26, 32, 25, 25, 35, 34, 28, 35, 24, 29,~
$ position <chr> "GK", "GK", "GK", "GK", "GK", "GK", "GK~
$ country <chr> "tr Türkiye", "be Belgium", "pt Portuga~
$ matches_played <dbl> 1, 4, 5, 4, 4, 3, 3, 4, 1, 3, 1, 6, 4, ~
$ starts <dbl> 1, 4, 5, 4, 4, 3, 3, 4, 0, 3, 1, 6, 4, ~
$ minutes_played <dbl> 90, 360, 510, 360, 390, 270, 270, 360, ~
$ played_90 <dbl> 1.0, 4.0, 5.7, 4.0, 4.3, 3.0, 3.0, 4.0,~
$ goals_against <dbl> 3, 2, 3, 5, 5, 5, 7, 5, 1, 6, 3, 3, 8, ~
$ goals_against_per_90 <dbl> 3.00, 0.50, 0.53, 1.25, 1.15, 1.67, 2.3~
$ shots_on_target_against <dbl> 3, 14, 14, 17, 16, 14, 19, 19, 2, 15, 5~
$ saves <dbl> 1, 13, 11, 12, 11, 9, 12, 15, 1, 9, 2, ~
$ save_percent <dbl> 0.0, 85.7, 85.7, 70.6, 75.0, 64.3, 68.4~
$ wins <dbl> 0, 1, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 1, ~
$ draw <dbl> 0, 1, 2, 1, 1, 0, 1, 0, 0, 2, 0, 3, 1, ~
$ losses <dbl> 1, 2, 1, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, ~
$ clean_sheets <dbl> 0, 2, 3, 0, 1, 1, 0, 0, 0, 0, 0, 4, 1, ~
$ clean_sheets_percentage <dbl> 0.0, 50.0, 60.0, 0.0, 25.0, 33.3, 0.0, ~
$ penalty_kicks_attempted <dbl> 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, ~

15

$ penalty_kicks_allowed <dbl> 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, ~
$ penalty_kicks_saved <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
$ penalty_kicks_missed <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
$ penalty_kicks_saved_percentage <dbl> NA, NA, 0, 100, 0, NA, 0, NA, NA, NA, N~
$ player_link <chr> "https://fbref.com//en/players/072e68ed~

3.13 Write the data to a csv file

write_csv(gk_players, "gk_players.csv")

3.14 Write the data to an Excel file

write.xlsx(gk_players, "gk_players.xlsx")

4 Scrape Advanced GK Stats Page

4.1 Read the live html tables from FBRef

adv_gk_euro_tables <- read_html_live(adv_gk_url) %>%
html_table(fill = T)

4.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

adv_gk_players <- adv_gk_euro_tables %>%
.[[3]] %>%
as.data.frame()

4.3 Convert the 1st row to column names and remove it from the data

colnames(adv_gk_players) <- adv_gk_players[1,]
adv_gk_players <- adv_gk_players[-1,]

16

4.4 Clean the column names and remove the rows with recurring column names

adv_gk_players <- adv_gk_players %>%
janitor::clean_names() %>%
filter(player != "Player")

4.5 Remove the “matches” column as it is not needed

adv_gk_players <- adv_gk_players %>%
select(-matches)

4.6 Convert the numeric columns to numeric

adv_gk_players <- adv_gk_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

4.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(adv_gk_url) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

4.7 Join the datasets together

17

adv_gk_players <- adv_gk_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

4.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

adv_gk_players <- adv_gk_players %>%
select(-rk, -age)

4.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

adv_gk_players <- adv_gk_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

4.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

adv_gk_players <- adv_gk_players %>%
select(-born) %>%
select(player, age, everything())

4.11 Rename every column to make them more descriptive

adv_gk_players <- adv_gk_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
goals_against = ga,
penalty_kicks_allowed = pka,
free_kick_goals_against = fk,
corner_kick_goals_against = ck,
own_goals_against = og,
post_shot_xg = p_sx_g,

18

post_shot_xg_per_shot_on_target = p_sx_g_so_t,
post_shot_xg_excluding_conceded = p_sx_g_2,
post_shot_xg_excluding_conceded_per90 = x90,
passes_completed_over_40yrds = cmp,
passes_attempted_over_40yrds = att,
passes_completed_over_40yrds_percent = cmp_percent,
passes_attempted = att_gk,
throws_attempted = thr,
passes_attempted_over_40yrds_percent = launch_percent,
average_pass_length = avg_len,
goal_kicks_attempted = att_2,
goal_kicks_over_40yrds_percent= launch_percent_2,
average_goal_kick_length = avg_len_2,
crosses_faced = opp,
crosses_stopped = stp,
crosses_stopped_percent = stp_percent,
number_of_defensive_actions_outside_penalty_area = number_opa,
number_of_defensive_actions_outside_penalty_area_per90 = number_opa_90,
distance_from_goal_of_all_defensive_actions_yrds = avg_dist,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

4.12 View the data

head(adv_gk_players)

player age position country played_90 goals_against
1 Altay Bayındır 26 GK tr Türkiye 1.0 3
2 Koen Casteels 32 GK be Belgium 4.0 2
3 Diogo Costa 25 GK pt Portugal 5.7 3
4 Gianluigi Donnarumma 25 GK it Italy 4.0 5
5 Martin Dúbravka 35 GK sk Slovakia 4.3 5
6 Péter Gulácsi 34 GK hu Hungary 3.0 5
penalty_kicks_allowed free_kick_goals_against corner_kick_goals_against

1 0 0 0
2 0 0 0
3 1 0 0
4 0 0 0
5 1 0 0

19

6 0 0 0
own_goals_against post_shot_xg post_shot_xg_per_shot_on_target

1 1 1.6 0.54
2 1 2.7 0.20
3 0 3.5 0.18
4 1 6.0 0.30
5 0 5.0 0.25
6 0 5.4 0.39
post_shot_xg_excluding_conceded post_shot_xg_excluding_conceded_per90

1 -0.4 -0.37
2 1.7 0.43
3 0.5 0.11
4 2.0 0.49
5 0.0 0.01
6 0.4 0.14
passes_completed_over_40yrds passes_attempted_over_40yrds

1 3 7
2 8 31
3 6 18
4 10 23
5 18 61
6 10 30
passes_completed_over_40yrds_percent passes_attempted throws_attempted

1 42.9 33 3
2 25.8 107 19
3 33.3 129 29
4 43.5 86 16
5 29.5 138 20
6 33.3 83 17
passes_attempted_over_40yrds_percent average_pass_length goal_kicks_attempted

1 21.2 31.2 2
2 17.8 27.1 35
3 13.2 27.2 26
4 22.1 26.3 16
5 31.9 30.1 23
6 28.9 31.8 14
goal_kicks_over_40yrds_percent average_goal_kick_length crosses_faced

1 0.0 7.5 8
2 34.3 34.7 48
3 3.8 25.6 41
4 25.0 27.1 41
5 73.9 54.7 57

20

6 42.9 39.0 43
crosses_stopped crosses_stopped_percent

1 2 25.0
2 4 8.3
3 2 4.9
4 3 7.3
5 2 3.5
6 1 2.3

number_of_defensive_actions_outside_penalty_area
1 0
2 4
3 6
4 2
5 4
6 1
number_of_defensive_actions_outside_penalty_area_per90

1 0.00
2 1.00
3 1.20
4 0.50
5 1.00
6 0.33
distance_from_goal_of_all_defensive_actions_yrds

1 12.2
2 13.8
3 21.0
4 10.1
5 11.8
6 10.1

player_link
1 https://fbref.com//en/players/072e68ed/Altay-Bayindir
2 https://fbref.com//en/players/db401046/Koen-Casteels
3 https://fbref.com//en/players/93fffbcf/Diogo-Costa
4 https://fbref.com//en/players/08f5afaa/Gianluigi-Donnarumma
5 https://fbref.com//en/players/3a949a25/Martin-Dubravka
6 https://fbref.com//en/players/bcb2ccd8/Peter-Gulacsi

4.13 Write the data to a csv file

write_csv(adv_gk_players, "adv_gk_players.csv")

21

4.14 Write the data to an Excel file

write.xlsx(adv_gk_players, "adv_gk_players.xlsx")

5 Scrape Shooting Stats Page

5.1 Read the live html tables from FBRef

shooting_euro_tables <- read_html_live(shooting_url) %>%
html_table(fill = T)

5.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

shooting_players <- shooting_euro_tables %>%
.[[3]] %>%
as.data.frame()

5.3 Convert the 1st row to column names and remove it from the data

colnames(shooting_players) <- shooting_players[1,]
shooting_players <- shooting_players[-1,]

5.4 Clean the column names and remove the rows with recurring column names

shooting_players <- shooting_players %>%
janitor::clean_names() %>%
filter(player != "Player")

5.5 Remove the “matches” column as it is not needed

shooting_players <- shooting_players %>%
select(-matches)

22

5.6 Convert the numeric columns to numeric

shooting_players <- shooting_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

5.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(shooting_url) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

5.7 Join the datasets together

shooting_players <- shooting_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

5.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

shooting_players <- shooting_players %>%
select(-rk, -age)

23

5.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

shooting_players <- shooting_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

5.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

shooting_players <- shooting_players %>%
select(-born) %>%
select(player, age, everything())

5.11 Rename every column to make them more descriptive

shooting_players <- shooting_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
goals = gls,
shots = sh,
shots_on_target = so_t,
shots_on_target_percent = so_t_percent,
shots_per90 = sh_90,
shots_on_target_per90 = so_t_90,
goals_per_shot = g_sh,
goals_per_shot_on_target = g_so_t,
average_shot_distance = dist,
free_kick_shots = fk,
penalty_scored = pk,
penalty_kicks_attempted = p_katt,
expected_goals = x_g,
non_penalty_expected_goals = npx_g,
non_penalty_expected_goals_shots = npx_g_sh,
goals_minus_expected_goals = g_x_g,
non_penalty_expected_goals_minus_expected_goals = np_g_x_g,
player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed

select(-player_id)

24

5.12 Write the data to a csv file

write_csv(shooting_players, "shooting_players.csv")

5.13 Write the data to an Excel file

write.xlsx(shooting_players, "shooting_players.xlsx")

6 Scrape Passing Stats Page

6.1 Read the live html tables from FBRef

passing_euro_tables <- read_html_live(passing_stats) %>%
html_table(fill = T)

6.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

passing_players <- passing_euro_tables %>%
.[[3]] %>%
as.data.frame()

6.3 Convert the 1st row to column names and remove it from the data

colnames(passing_players) <- passing_players[1,]
passing_players <- passing_players[-1,]

6.4 Clean the column names and remove the rows with recurring column names

passing_players <- passing_players %>%
janitor::clean_names() %>%
filter(player != "Player")

25

6.5 Remove the “matches” column as it is not needed

passing_players <- passing_players %>%
select(-matches)

6.6 Convert the numeric columns to numeric

passing_players <- passing_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

6.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(passing_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

6.7 Join the datasets together

passing_players <- passing_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

26

6.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

passing_players <- passing_players %>%
select(-rk, -age)

6.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

passing_players <- passing_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

6.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

passing_players <- passing_players %>%
select(-born) %>%
select(player, age, everything())

6.11 Rename every column to make them more descriptive

passing_players <- passing_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
passes_completed = cmp,
passes_attempted = att,
pass_completion_percent = cmp_percent,
passing_distance_total = tot_dist,
passing_distance_progressive = prg_dist,
short_passes_completed = cmp_2,
short_passes_attempted = att_2,
short_passes_completion_percent = cmp_percent_2,
medium_passes_completed = cmp_3,
medium_passes_attempted = att_3,
medium_passes_completion_percent = cmp_percent_3,
long_passes_completed = cmp_4,

27

long_passes_attempted = att_4,
long_passes_completion_percent = cmp_percent_4,
assists = ast,
expected_assisted_goals = x_ag,
expected_assists = x_a,
assists_minus_expected_assisted_goals = a_x_ag,
key_passes = kp,
passes_into_final_third = x1_3,
passes_into_penalty_area = ppa,
crosses_into_penalty_area = crs_pa,
progressive_passes = prg_p,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

6.12 Write the data to a csv file

write_csv(passing_players, "passing_players.csv")

6.13 Write the data to an Excel file

write.xlsx(passing_players, "passing_players.xlsx")

7 Scrape Passing Types Stats Page

7.1 Read the live html tables from FBRef

types_passing_euro_tables <- read_html_live(passing_types_stats) %>%
html_table(fill = T)

7.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

types_passing_players <- types_passing_euro_tables %>%
.[[3]] %>%
as.data.frame()

28

7.3 Convert the 1st row to column names and remove it from the data

colnames(types_passing_players) <- types_passing_players[1,]
types_passing_players <- types_passing_players[-1,]

7.4 Clean the column names and remove the rows with recurring column names

types_passing_players <- types_passing_players %>%
janitor::clean_names() %>%
filter(player != "Player")

7.5 Remove the “matches” column as it is not needed

types_passing_players <- types_passing_players %>%
select(-matches)

7.6 Convert the numeric columns to numeric

types_passing_players <- types_passing_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

7.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(passing_types_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%

29

mutate(player_id = gsub("\\..*","", url_info),
player_id = gsub(".*/[a-z]/","", player_id))

7.7 Join the datasets together

types_passing_players <- types_passing_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

7.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

types_passing_players <- types_passing_players %>%
select(-rk, -age)

7.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

types_passing_players <- types_passing_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

7.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

types_passing_players <- types_passing_players %>%
select(-born) %>%
select(player, age, everything())

7.11 As column 15 contains the inswinging corner kicks, we can rename it to make it more
descriptive

colnames(types_passing_players)[15] <- "inswinging_corner_kicks"

30

7.12 Rename every other column to make them more descriptive

types_passing_players <- types_passing_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
passes_attempted = att,
live_ball_passes = live,
dead_ball_passes = dead,
free_kick_passes = fk,
through_balls_completed = tb,
switches_over_40yrds = sw,
crosses = crs,
throws_ins_taken = ti,
corner_kicks = ck,
outswinging_corner_kicks = out,
straight_corner_kicks = str,
completed_passes = cmp,
passes_offside = off,
passes_blocked = blocks,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

7.13 Write the data to a csv file

write_csv(types_passing_players, "types_passing_players.csv")

7.14 Write the data to an Excel file

write.xlsx(types_passing_players, "types_passing_players.xlsx")

31

8 Scrape Creation Stats Page

8.1 Read the live html tables from FBRef

creation_euro_tables <- read_html_live(creation_stats) %>%
html_table(fill = T)

8.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

creation_players <- creation_euro_tables %>%
.[[3]] %>%
as.data.frame()

8.3 Convert the 1st row to column names and remove it from the data

colnames(creation_players) <- creation_players[1,]
creation_players <- creation_players[-1,]

8.4 Clean the column names and remove the rows with recurring column names

creation_players <- creation_players %>%
janitor::clean_names() %>%
filter(player != "Player")

8.5 Remove the “matches” column as it is not needed

creation_players <- creation_players %>%
select(-matches)

8.6 Convert the numeric columns to numeric

creation_players <- creation_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

32

8.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(creation_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

8.7 Join the datasets together

creation_players <- creation_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

8.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

creation_players <- creation_players %>%
select(-rk, -age)

8.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

creation_players <- creation_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

33

8.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

creation_players <- creation_players %>%
select(-born) %>%
select(player, age, everything())

8.11 Rename every column to make them more descriptive

creation_players <- creation_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
shot_creating_actions = sca,
shot_creating_actions_per_90 = sca90,
live_pass_shot_creating_actions = pass_live,
dead_ball_shot_creating_actions = pass_dead,
take_on_to_shot = to,
shot_to_shot_creating_actions = sh,
fouled_to_shot_creating_actions = fld,
defensive_action_to_shot_creating_actions = def,
goal_creating_actions = gca,
goal_creating_actions_per_90 = gca90,
live_pass_goal_creating_actions = pass_live_2,
dead_ball_goal_creating_actions = pass_dead_2,
take_on_to_goal_creating_actions = to_2,
shot_to_goal_creating_actions = sh_2,
fouled_to_goal_creating_actions = fld_2,
defensive_action_to_goal_creating_actions = def_2,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

8.12 Write the data to a csv file

write_csv(creation_players, "creation_players.csv")

34

8.13 Write the data to an Excel file

write.xlsx(creation_players, "creation_players.xlsx")

9 Scrape Defensive Stats Page

9.1 Read the live html tables from FBRef

defence_euro_tables <- read_html_live(defensive_stats) %>%
html_table(fill = T)

9.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

defence_players <- defence_euro_tables %>%
.[[3]] %>%
as.data.frame()

9.3 Convert the 1st row to column names and remove it from the data

colnames(defence_players) <- defence_players[1,]
defence_players <- defence_players[-1,]

9.4 Clean the column names and remove the rows with recurring column names

defence_players <- defence_players %>%
janitor::clean_names() %>%
filter(player != "Player")

9.5 Remove the “matches” column as it is not needed

defence_players <- defence_players %>%
select(-matches)

35

9.6 Convert the numeric columns to numeric

defence_players <- defence_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

9.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(defensive_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

9.7 Join the datasets together

defence_players <- defence_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

9.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

defence_players <- defence_players %>%
select(-rk, -age)

36

9.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

defence_players <- defence_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

9.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

defence_players <- defence_players %>%
select(-born) %>%
select(player, age, everything())

9.11 Rename every column to make them more descriptive

defence_players <- defence_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
players_tackled = tkl,
tackles_won = tkl_w,
tackles_def_3rd = def_3rd,
tackles_mid_3rd = mid_3rd,
tackles_att_3rd = att_3rd,
dribblers_tackled = tkl_2,
dribbles_challenged = att,
dribblers_tackled_success_percent = tkl_percent,
dribblers_tackled_unsuccessful = lost,
blocks = blocks,
shots_blocked = sh,
passes_blocked = pass,
interceptions = int,
tackles_plus_interceptions = tkl_int,
clearances = clr,
errors = err,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

37

9.12 Write the data to a csv file

write_csv(defence_players, "defence_players.csv")

9.13 Write the data to an Excel file

write.xlsx(defence_players, "defence_players.xlsx")

10 Scrape Possession Stats Page

10.1 Read the live html tables from FBRef

possession_euro_tables <- read_html_live(possession_stats) %>%
html_table(fill = T)

10.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

possession_players <- possession_euro_tables %>%
.[[3]] %>%
as.data.frame()

10.3 Convert the 1st row to column names and remove it from the data

colnames(possession_players) <- possession_players[1,]
possession_players <- possession_players[-1,]

10.4 Clean the column names and remove the rows with recurring column names

possession_players <- possession_players %>%
janitor::clean_names() %>%
filter(player != "Player")

38

10.5 Remove the “matches” column as it is not needed

possession_players <- possession_players %>%
select(-matches)

10.6 Convert the numeric columns to numeric

possession_players <- possession_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

10.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(possession_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

10.7 Join the datasets together

possession_players <- possession_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

39

10.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

possession_players <- possession_players %>%
select(-rk, -age)

10.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

possession_players <- possession_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

10.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

possession_players <- possession_players %>%
select(-born) %>%
select(player, age, everything())

10.11 Rename every column to make them more descriptive

possession_players <- possession_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
defensive_penalty_area_touches = def_pen,
defensive_third_touches = def_3rd,
middle_third_touches = mid_3rd,
attacking_third_touches = att_3rd,
attacking_penalty_area_touches = att_pen,
live_ball_touches = live,
take_ons_attempted = att,
take_ons_successful = succ,
take_ons_success_percent = succ_percent,
tackled_during_take_on = tkld,
tackled_during_take_on_percent = tkld_percent,
total_dribbling_distance_yrds = tot_dist,

40

progressive_dribbling_distance_yrds = prg_dist,
progressive_carries = prg_c,
carries_into_final_third = x1_3,
carries_into_penalty_area = cpa,
miscontrols = mis,
dispossessed = dis,
passes_recieved = rec,
progressive_passes_recieved = prg_r,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

10.12 Write the data to a csv file

write_csv(possession_players, "possession_players.csv")

10.13 Write the data to an Excel file

write.xlsx(possession_players, "possession_players.xlsx")

11 Scrape Playing Time Stats Page

11.1 Read the live html tables from FBRef

playing_time_euro_tables <- read_html_live(playing_time_stats) %>%
html_table(fill = T)

11.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

playing_time_players <- playing_time_euro_tables %>%
.[[3]] %>%
as.data.frame()

41

11.3 Convert the 1st row to column names and remove it from the data

colnames(playing_time_players) <- playing_time_players[1,]
playing_time_players <- playing_time_players[-1,]

11.4 Clean the column names and remove the rows with recurring column names

playing_time_players <- playing_time_players %>%
janitor::clean_names() %>%
filter(player != "Player")

11.5 Remove the “matches” column as it is not needed

playing_time_players <- playing_time_players %>%
select(-matches)

11.6 Convert the numeric columns to numeric

playing_time_players <- playing_time_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

11.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(playing_time_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%

42

mutate(player_id = gsub("\\..*","", url_info),
player_id = gsub(".*/[a-z]/","", player_id))

11.7 Join the datasets together

playing_time_players <- playing_time_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

11.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

playing_time_players <- playing_time_players %>%
select(-rk, -age)

11.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

playing_time_players <- playing_time_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

11.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

playing_time_players <- playing_time_players %>%
select(-born) %>%
select(player, age, everything())

11.11 Rename every column to make them more descriptive

playing_time_players <- playing_time_players %>%
rename(
position = pos,
country = squad,

43

matches_played = mp,
minutes_played = min,
minutes_per_match_played = mn_mp,
percent_of_minutes_played = min_percent,
played_90 = x90s,
minutes_per_match_started = mn_start,
completed_matches = compl,
substitute_appearances = subs,
minutes_per_substitute_appearance = mn_sub,
unused_substitute = un_sub,
points_per_match = ppm,
goals_scored = on_g,
goals_conceded = on_ga,
goal_difference = x,
total_goal_difference_per_90 = x90,
goal_difference_per_appearance = on_off,
xg_while_on_the_pitch = onx_g,
xg_against_while_on_the_pitch = onx_ga,
xg_difference = x_g,
xg_difference_per_90 = x_g_90,
xg_difference_per_appearance = on_off_2,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

11.12 Write the data to a csv file

write_csv(playing_time_players, "playing_time_players.csv")

11.13 Write the data to an Excel file

write.xlsx(playing_time_players, "playing_time_players.xlsx")

44

12 Scrape Misc Stats Page

12.1 Read the live html tables from FBRef

misc_euro_tables <- read_html_live(misc_stats) %>%
html_table(fill = T)

12.2 Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the
individual player data

misc_players <- misc_euro_tables %>%
.[[3]] %>%
as.data.frame()

12.3 Convert the 1st row to column names and remove it from the data

colnames(misc_players) <- misc_players[1,]
misc_players <- misc_players[-1,]

12.4 Clean the column names and remove the rows with recurring column names

misc_players <- misc_players %>%
janitor::clean_names() %>%
filter(player != "Player")

12.5 Remove the “matches” column as it is not needed

misc_players <- misc_players %>%
select(-matches)

12.6 Convert the numeric columns to numeric

misc_players <- misc_players %>%
mutate(across(c(1, 5:ncol(.)), as.numeric))

45

12.6.1 Scrape the player ids from the player links in the live html table

player_id <- read_html_live(misc_stats) %>%
html_nodes("table") %>%
html_nodes("tbody") %>%
html_elements("a") %>%
html_attr("href") %>%
as.data.frame() %>%
setNames("url_info") %>%
to this point the url also contains the player matchlogs so we need to filter out those
mutate(get_players = ifelse(grepl(pattern = '/players/', url_info), 1, 0)) %>%
mutate(get_matchlogs = ifelse(grepl(pattern = '/matchlogs/', url_info), 1, 0)) %>%
filter(get_players == 1 & get_matchlogs == 0) %>%
select(-get_players) %>%
select(-get_matchlogs) %>%
mutate(player_id = gsub("\\..*","", url_info),

player_id = gsub(".*/[a-z]/","", player_id))

12.7 Join the datasets together

misc_players <- misc_players %>%
bind_cols(player_id) %>%
mutate(url_info = paste0("https://fbref.com/", url_info)) %>%
rename(link_to_player_page = url_info)

12.8 As we don’t need the ‘rk’ and ‘age’ columns, we can remove it to clean up the data into its
final format

misc_players <- misc_players %>%
select(-rk, -age)

12.9 Calculate an new ‘age’ column from the ‘born’ column to 2024

misc_players <- misc_players %>%
mutate(age = 2024 - as.numeric(str_sub(born, start = -4)))

46

12.10 Remove the ‘born’ column as it is no longer needed and position the ‘age’ column next to
the ‘player’ column

misc_players <- misc_players %>%
select(-born) %>%
select(player, age, everything())

12.11 Rename every column to make them more descriptive

misc_players <- misc_players %>%
rename(
position = pos,
country = squad,
played_90 = x90s,
yellow_cards = crd_y,
red_cards = crd_r,
second_yellow_cards = x2crd_y,
fouls_committed = fld,
fouls_drawn = fls,
offsides = off,
crosses = crs,
interceptions = int,
tackles_won = tkl_w,
penalty_kicks_won = p_kwon,
penalty_kicks_conceded = p_kcon,
own_goals = og,
loose_ball_recoveries = recov,
aerial_duels_won = won,
aerial_duels_lost = lost,
aerial_duels_won_percent = won_percent,

player_link = link_to_player_page) %>% # remove 'player_id' as it is no longer needed
select(-player_id)

12.12 Write the data to a csv file

write_csv(misc_players, "misc_players.csv")

47

12.13 Write the data to an Excel file

write.xlsx(misc_players, "misc_players.xlsx")

13 Combine all csv files into one

files <- list.files(pattern = "*.csv")
all_players <- map_df(files, read_csv)

Rows: 29 Columns: 31
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (27): age, played_90, goals_against, penalty_kicks_allowed, free_kick_go...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 621 Columns: 199
-- Column specification --
Delimiter: ","
chr (4): player, player_link, position, country
dbl (195): age, played_90, goals_against, penalty_kicks_allowed, free_kick_g...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 22
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (18): age, played_90, shot_creating_actions, shot_creating_actions_per_9...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 22
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (18): age, played_90, players_tackled, tackles_won, tackles_def_3rd, tac...

48

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 29 Columns: 24
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (20): age, matches_played, starts, minutes_played, played_90, goals_agai...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 22
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (18): age, played_90, yellow_cards, red_cards, second_yellow_cards, foul...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 29
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (25): age, played_90, passes_completed, passes_attempted, pass_completio...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 621 Columns: 27
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (23): age, matches_played, minutes_played, minutes_per_match_played, per...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 28
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (24): age, played_90, touches, defensive_penalty_area_touches, defensive...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

49

Rows: 493 Columns: 23
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (19): age, played_90, goals, shots, shots_on_target, shots_on_target_per...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 34
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (30): age, matches_played, starts, minutes_played, played_90, goals, ass...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 493 Columns: 21
-- Column specification --
Delimiter: ","
chr (4): player, position, country, player_link
dbl (17): age, played_90, passes_attempted, live_ball_passes, dead_ball_pass...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

13.1 Move ‘player_link’ column to after ‘player’ column and Move ‘age’ column to after ‘country’
column

all_players <- all_players %>% select(player, player_link, position, country,
age, everything())

13.2 Replace all numeric NA values with 0

all_players <- all_players %>% mutate_if(is.numeric, ~replace(., is.na(.), 0))

13.3 Remove all rows with dublicated player_link

50

all_players <- all_players %>% distinct(player_link, .keep_all = TRUE)

13.4 Write the combined data to a csv file

write_csv(all_players, "all_players.csv")

13.5 Write the combined data to an Excel file

write.xlsx(all_players, "all_players.xlsx")

Now you have a nice shiny new dataset with all the player data from the Euro 2024 tournament in both csv and
Excel formats. Now to explore - Enjoy!

51

	Introduction to Web Scraping and Writing Data to CSV and Excel Files
	Load libraries for Web Scraping
	Define the Live HTML URLs for each Stats Web Page from FBRef

	Scrape General Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	View the final data
	Write the data to a csv file
	Write the data to an Excel file

	Scrape General GK Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	View the data
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Advanced GK Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	View the data
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Shooting Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Passing Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Passing Types Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	As column 15 contains the inswinging corner kicks, we can rename it to make it more descriptive
	Rename every other column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Creation Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Defensive Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Possession Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Playing Time Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Scrape Misc Stats Page
	Read the live html tables from FBRef
	Scrape the table of interest (3rd in this case) and convert it to a data frame - this has the individual player data
	Convert the 1st row to column names and remove it from the data
	Clean the column names and remove the rows with recurring column names
	Remove the ``matches'' column as it is not needed
	Convert the numeric columns to numeric
	Scrape the player ids from the player links in the live html table

	Join the datasets together
	As we don't need the `rk' and `age' columns, we can remove it to clean up the data into its final format
	Calculate an new `age' column from the `born' column to 2024
	Remove the `born' column as it is no longer needed and position the `age' column next to the `player' column
	Rename every column to make them more descriptive
	Write the data to a csv file
	Write the data to an Excel file

	Combine all csv files into one
	Move `player_link' column to after `player' column and Move `age' column to after `country' column
	Replace all numeric NA values with 0
	Remove all rows with dublicated player_link
	Write the combined data to a csv file
	Write the combined data to an Excel file

